Abu Sayed
UB-ID 50172775
EE-401 Filter Design

Purpose:

December 14, 2017
The primary purpose of these filter design is to learn how to design a filter using different parameter such as cut-off frequency, ripple, attenuation etc. It is also recommended that, how to calculate all the parameter that used to do the simulation. As an Engineer, one has to know the procedure to do the calculation procedure to find the raw data that usually software do it for us. Microstrip filters send and receive microwave signal.

Primary equation to be used:

Generator resistor

$g_{k}=\frac{4 a_{k-1} a_{k}}{b_{k-1} g_{k-1}} g_{1}=\frac{2 a_{1}}{\sinh \left(\frac{\beta}{2 N}\right)} a_{k}=\sin \left[\left(\frac{2 k-1}{2 N}\right) \pi\right] \beta=\ln \left[\operatorname{coth}\left(\frac{L_{A R}}{17.37}\right)\right] b_{k}=$ $\sinh ^{2}\left(\frac{\beta}{2 N}\right)+\sin ^{2}\left(\frac{K \pi}{N}\right)$

Find β Value:

In order to find g_{k} value, one must calculate the other parameters such as $\beta, a_{k} b_{k}$, and also in determination of these values number of elements (N) has to be chosen first. $\beta=\ln \left[\operatorname{coth}\left(\frac{L_{A R}}{17.37}\right)\right]$ where $L_{A R}$ is given as $0.2 d$ Bripple $\beta=\ln \left[\operatorname{coth}\left(\frac{0.2}{17.37}\right)\right] \beta=4.4642$

Find a_{k} Value:

$N=5$, Have Been Chosen For This Low-pass and Band-pass Filter Design
$k=1, \quad a_{1}=\sin \left[\frac{\pi}{10}\right]=0.3090$
$k=2, \quad a_{2}=\sin \left[\frac{3 * \pi}{10}\right]=0.8090$
$k=3, \quad a_{3}=\sin \left[\frac{5 * \pi}{10}\right]=1$
$k=4, \quad a_{4}=\sin \left[\frac{7 * \pi}{10}\right]=0.8090$
$k=5, \quad a_{5}=\sin \left[\frac{9 * \pi}{10}\right]=0.3090$
Now from the equation (2) we get,
$g_{1}=\frac{2 a_{1}}{\sinh \left(\frac{B}{2 N}\right)}=\frac{2 * 0.3090}{\sinh \left(\frac{4.4642}{2 * 5}\right)}=1.3394$ Since g_{1} is not equal to other values of g so, we need to calculate them separately....

Abu Sayed
UB-ID 50172775
EE-401 Filter Design
December 14, 2017

Find b_{k} Value:

Following the equation (3) we get,
$b_{k}=\sinh ^{2}\left(\frac{\beta}{2 N}\right)+\sin ^{2}\left(\frac{K \pi}{N}\right)$
$k=1, \quad b_{1}=\sinh ^{2}\left(\frac{4.4642}{2 * 5}\right)+\sin ^{2}\left(\frac{1 * \pi}{5}\right)=0.5584$
$k=2, \quad b_{2}=\sinh ^{2}\left(\frac{4.4642}{2 * 5}\right)+\sin ^{2}\left(\frac{2 * \pi}{5}\right)=1.1174$
$k=3, \quad b_{3}=\sinh ^{2}\left(\frac{4.4642}{2 * 5}\right)+\sin ^{2}\left(\frac{3 * \pi}{5}\right)=1.1174$
$k=4, \quad b_{4}=\sinh ^{2}\left(\frac{4.4642}{2 * 5}\right)+\sin ^{2}\left(\frac{4 * \pi}{5}\right)=0.5584$
$k=5, \quad b_{5}=\sinh ^{2}\left(\frac{4.4642}{2 * 5}\right)+\sin ^{2}\left(\frac{5 * \pi}{5}\right)=0.2129$

Find rest of g_{k} Values:

$g_{k}=\frac{4 a_{k-1} a_{k}}{b_{k-1} g_{k-1}}$
$k=2,3,4$,
..n
$k=2, \quad g_{2}=\frac{4 * a_{1} * a_{2}}{b_{1} * g_{1}}=\frac{4 *(0.3090) *(0.8090)}{(0.5584)(1.3394)}=1.3370$
$k=3, \quad g_{3}=\frac{4 * a_{2} * a_{3}}{b_{2} * g_{2}}=\frac{4 *(0.8090) *(1)}{(1.1174)(1.3370)}=2.1660$
$k=4, \quad g_{4}=\frac{4 * a_{3} * a_{4}}{b_{3} * g_{4}}=\frac{4 *(1) *(0.8090)}{(1.1174)(2.1660)}=1.3370$
$k=5, \quad g_{5}=\frac{4 * a_{4} * a_{5}}{b_{4} * g_{4}}=\frac{4 *(0.8090) *(0.3090)}{(0.2129)(1.3370)}=1.3399$
So, the generator resistor values are-
$g_{1}=1.3394 \quad g_{2}=1.3370$
$g_{3}=2.1660 \quad g_{4}=1.3370$
$g_{5}=1.3394$

1 Frequency Transformation:

Since N has been chosen as odd elements $(N=5)$, then the normalized impedance ($Z=1$).
Cutoff Frequency, $f_{c}=4 G H z$
Using the given formulas, we get
$\frac{\omega_{c}^{\prime}}{2 \pi}=4 G H z$
$\frac{2 \pi f_{c}}{2 \pi}=4$
$f_{c}=f_{0}=4 G H z$

Shunt Capacitor:

$C_{k}^{\prime}=\frac{g_{k}}{\omega_{0}}$
$C_{2}^{\prime}=\frac{g_{2}}{2 \pi f_{c} Z_{0}}=\frac{1.3370}{2 * \pi * 50 * 4 * 10^{9}}=1.0659 p F$

Abu Sayed
UB-ID 50172775
EE-401 Filter Design
December 14, 2017
$C_{4}^{\prime}=\frac{g_{4}}{2 \pi f_{c} Z_{0}}=\frac{1.3370}{2 * \pi * 50 * 4 * 10^{9}}=1.0639 p F$

Shunt Inductor:

$L_{1}^{\prime}=\frac{g_{1} * 50}{2 \pi f_{c}}=\frac{1.3394}{2 * \pi * 4 * 10^{9}}=2.6647 \mathrm{nH}$
$L_{3}^{\prime}=\frac{g_{3} * 50}{2 \pi f_{c}}=\frac{2.1660}{2 * \pi * 4 * 10^{9}}=4.3091 \mathrm{nH}$
$L_{5}^{\prime}=\frac{g_{5} * 50}{2 \pi f_{c}}=\frac{1.3394}{2 * \pi * 4 * 10^{9}}=2.6647 \mathrm{nH}$

Series Capacitor:

Problem with calculation, Need to fix them first.

Low-pass Filter Design Schematic and Simulation:

Figure 1: Low-pass (Lumped)

Band-pass Filter:

$\omega=8 G H z$
$\omega_{0}=\sqrt{\omega_{1} * \omega_{2}}=\sqrt{35.75}=5.9791 G H z\left|\frac{\omega}{\omega_{0}}-1\right|=\frac{\omega^{\prime}}{\omega_{0}^{\prime}}=\frac{\omega_{0}}{\omega_{2}-\omega_{1}}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=$ $\frac{5.9791}{(6.5-5.5)}\left(\frac{8}{5.9791}-\frac{5.9791}{8}\right)=3.5313 G H z$
$\left|\frac{\omega}{\omega_{0}}-1\right|=\frac{5.9791}{(6.5-5.5)}\left(\frac{8}{5.9791}-\frac{5.9791}{8}\right)=3.5313 G H z$

Figure 2: Low-pass(Micro-strip)

Figure 3: Low-pass(Momentum)

$$
\begin{aligned}
& \text { Abu Sayed } \\
& 50172775
\end{aligned}
$$

Abu Sayed
UB-ID 50172775
EE-401 Filter Design
December 14, 2017
$\left|\frac{\omega}{\omega_{0}}-1\right|=3.5313-1=2.5313 G H z$ Need to find the g_{k} Values for band-pass filter since $N=5$ have found by using 2.5313 GHz with compare with the figure 8.26 , now need to figure only g_{1}, g_{2}, g_{3} For Band-pass filter the following equation-
$L_{1}=g_{1}, Z_{0}=R_{0}=50 \Omega$
So then the Ripple, $\Delta=\%=\frac{\omega_{2}-\omega_{1}}{\omega_{0}}=\frac{6.5-5.5}{5.9791}=0.1672=16.72 \%$
also $g_{1}, g_{2}, g_{3}, g_{4}, g_{5}$ have found using Matlab formula, the found values are
$g_{1}=1.339447$
$g_{2}=1.337008$
$g_{3}=2.16608$
$g_{4}=1.337008$
$g_{5}=1.339447$

Coupled Inductance and capacitor values are:

$C_{1}^{\prime}=\frac{g_{1}}{\omega_{0} * \Delta * Z_{0}}=\frac{1.339447}{5.9791 E 9 * 0.167 * 50}=4.265 n F$
$L_{1}^{\prime}=\frac{L_{1} * Z_{0}}{\omega * \Delta}=\frac{1.337008 * 50}{5.9791 E 9 * 2 \pi * 0.167}=0.1671 \mathrm{nH}$
$C_{2}^{\prime}=0.0665 p F$
$L_{2}^{\prime}=10.752 n H$
$C_{3}^{\prime}=0.865 p F$
$L_{3}^{\prime}=0.1031 n H$
$C_{4}^{\prime}=0.0065 p F$
$L_{4}^{\prime}=10.752 n H$
$C_{5}^{\prime}=4.2534 p F$
$L_{5}^{\prime}=0.1671 n H$
Determining a parallel coupled Band-pass filter parameter of $\frac{j}{Y_{0}}$ is

$$
\begin{aligned}
& \frac{J_{0}}{Y_{0}}=\left[\frac{\pi W}{2 g_{1} g_{1}}\right]^{2} \\
& \frac{J_{0}}{Y_{0}}=\left[\frac{\pi W}{2 g_{1} g_{2}}\right]^{1 / 2} \\
& W=0.167 \\
& \frac{J_{0,1}}{Y_{0}}=\left[\frac{\pi W}{2 g_{o} g_{1}}\right]^{1 / 2}=\left[\frac{\pi * 0.167}{2 * 1.33947 * 1}\right]^{1 / 2}=0.4423 \\
& \frac{J_{1,2}}{Y_{0}}=\frac{\pi W}{2 *\left(g_{1} g_{2}\right)^{1 / 2}}=\frac{\pi * 0.167}{\sqrt{(1.339447 * 1.337008)}}=0.1961 \\
& \frac{J_{2,3}}{Y_{0}}=0.14407 \\
& \frac{J_{3,4}}{Y_{0}}=0.1541
\end{aligned}
$$

Abu Sayed
UB-ID 50172775
EE-401 Filter Design
December 14, 2017
$\frac{J_{4,5}}{Y_{0}}=0.381$

Finding the Values for $Z_{o o}$ and $Z_{o e}$:

This Values were found using LineCalc

Figure 4: Values of Ze

Figure 5: Values of Zo

		for Z_{0} Values	\mathbf{w}	\mathbf{S}
\mathbf{Z}_{00}			\mathbf{W}	\mathbf{S}
Z_{01}	37.66	1.968	0.294	7.045
Z_{12}	42.114	2.755	1.075	6.812
Z_{23}	43.47	2.850	1.418	6.777
Z_{34}	43.114	2.858	1.416	6.777
Z_{45}	47.115	1.967	1.754	6.803

Band-pass Filter Design(Lumped, Micro-strip, and Momentum):

Abu Sayed
UB-ID 50172775
EE-401 Filter Design
December 14, 2017

Figure 6: Band-pass(Lumped)

Figure 7: Band-pass(Micro-strip)

Abu Sayed
UB-ID 50172775
EE-401 Filter Design
December 14, 2017

Figure 8: Band-pass(Micro-strip-Momentum)

